SIEMENS

MICROMASTER 440
 0,12 kW - 250 kW

Operating Instructions (Compact)
Issue 07/05

Warnings, Cautions and Notes

The following Warnings, Cautions and Notes are provided for your safety and as a means of preventing damage to the product or components in the machines connected. Specific Warnings, Cautions and Notes that apply to particular activities are listed at the beginning of the relevant chapters and are repeated or supplemented at critical points throughout these sections. Please read the information carefully, since it is provided for your personal safety and will also help prolong the service life of your MICROMASTER 440 Inverter and the equipment you connect to it.

WARNING

$>$ This equipment contains dangerous voltages and controls potentially dangerous rotating mechanical parts. Non-compliance with Warnings or failure to follow the instructions contained in this manual can result in loss of life, severe personal injury or serious damage to property.
> Only suitable qualified personnel should work on this equipment, and only after becoming familiar with all safety notices, installation, operation and maintenance procedures contained in this manual. The successful and safe operation of this equipment is dependent upon its proper handling, installation, operation and maintenance.
$>$ The DC link capacitors remain charged for five minutes after power has been removed. It is not permissible to open the equipment until 5 minutes after the power has been removed. The drive unit discharges itself during this time.
$>$ This equipment is capable of providing internal motor overload protection in accordance with UL508C section 42. Refer to P0610 and P0335, $\mathrm{i}^{2} \mathrm{t}$ is ON by default. Motor overload protection can also be provided using an external PTC or KTY84 (disabled by default P0601).
> This equipment is suitable for use in a circuit capable of delivering not more than 10,000 symmetrical amperes (rms), for a maximum voltage of $230 \mathrm{~V} /$ $460 \mathrm{~V} / 575 \mathrm{~V}$ when protected by an H, J or K type fuse, a circuit breaker or self-protected combination motor controller.
> Use Class $160 / 75{ }^{\circ} \mathrm{C}$ copper wire only with the cross-sections as specified in the Operating Instructions.
> The mains input, DC and motor terminals, can carry dangerous voltages even if the inverter is inoperative. Always wait 5 minutes to allow the unit to discharge after switching off before carrying out any installation work.

NOTE

> Before installing and commissioning, please read these safety instructions and warnings carefully and all the warning labels attached to the equipment.
$>$ Please ensure that all of the warning labels are kept in a condition so that they can be easily read and replace missing or damaged labels.
$>$ Maximum permissible surrounding ambient temperature is:

- Frame Sizes A-F:
$50^{\circ} \mathrm{C}$ at constant torque (CT) and 100% permissible output current
$40^{\circ} \mathrm{C}$ at variable torque (VT) and 100% permissible output current
- Frame Sizes FX and GX:
$40^{\circ} \mathrm{C}$ at 100% permissible output current

Contents

Abstract

1 Installation 5

1.1 Clearance distances for mounting 5
1.2 Mounting dimensions 5
2 Electrical Installation 6
2.1 Technical Specifications 6
$2.2 \quad$ Power Terminals 13
2.3 Control terminals 21
2.4 Block diagram 22
$3 \quad$ Factory setting 23
3.1 50/60 Hz DIP switch 23
4 Communications 24
4.1 Establishing communications MICROMASTER $440 \Leftrightarrow$ STARTER. 24
4.2 Establishing communications between the MICROMASTER $440 \Leftrightarrow$ AOP 24
4.3 Bus interface (CB) 25
5 BOP / AOP (Option) 26
5.1 Buttons and their Functions 26
5.2 Changing parameters using as an example P0004 "Parameter filter function" 27
6 Commissioning 28
6.1 Quick commissioning 28
6.2 Motor data identification 32
6.3 Magnetizing current 32
6.4 Commissioning the application 34
6.4.1 Serial Interface (USS) 34
6.4.2 Selection of command source 34
6.4.3 Digital input (DIN) 35
6.4.4 Digital outputs (DOUT) 36
6.4.5 Selection of frequency setpoint 37
6.4.6 Analog input (ADC) 38
6.4.7 Analog output (DAC) 39
6.4.8 Motor potentiometer (MOP) 40
6.4.9 Fixed frequency (FF) 41
6.4.10 JOG 42
6.4.11 Ramp function generator (RFG) 43
6.4.12 Reference/limit frequencies 44
6.4.13 Inverter protection 45
6.4.14 Motor protection 45
6.4.15 Encoder 47
6.4.16 V/f control 48
6.4.17 Field-orientated control 50
6.4.17.1 Sensorless vector control (SLVC) 51
6.4.17.2 Vector control with encoder (VC) 53
6.4.18 Converter-specific Functions 55
6.4.18.1 Flying start 55
6.4.18.2 Automatic restart 55
6.4.18.3 Holding brake 56
6.4.18.4 DC brake 58
6.4.18.5 Compound braking 59
6.4.18.6 Dynamic braking 60
6.4.18.7 Vdc controller 60
6.4.18.8 PID controller 61
6.4.18.9 Free function blocks (FFB) 62
6.4.19 Command and drive data set 63
6.4.20 Diagnoseparameter 66
6.5 Series commissioning 67
6.6 Parameter reset of factory setting 67
7 Displays and messages 68
7.1 LED status display 68
7.2 Fault messages and Alarm messages 69

1 Installation

1.1 Clearance distances for mounting

The inverters can be mounted adjacent to each other. When mounting inverters one above the other, the specified environmental conditions must not be exceeded.

Independent of this, these minimum distances must be observed.
> Frame Size A, B, C above and below 100 mm
> Frame Size D, E above and below 300 mm
> Frame Size F
> Frame Size FX, GX
above and below 350 mm
above 250 mm
below 150 mm
in front 40 mm (FX), 50 mm (GX)

1.2 Mounting dimensions

	Frame Size	Drilling Dimensions		Tightening Torque	
		$\stackrel{\mathrm{H}}{\mathrm{~mm} \text { (Inch) }}$	$\stackrel{\text { W }}{\mathrm{mm}} \text { (Inch) }$	Bolts	$\underset{\text { (ibf.in) }}{\mathrm{Nm}}$
	A	160 (6.30)	-	$2 \times \mathrm{M} 4$	$\begin{gathered} 2,5 \\ (22.12) \end{gathered}$
	B	174 (6.85)	138 (5.43)	$4 \times \mathrm{M} 4$	
	C	204 (8.03)	174 (6.85)	$4 \times \mathrm{M} 5$	
	D	486 (19.13)	235 (9.25)	$4 \times \mathrm{M} 8$	$\begin{gathered} 3,0 \\ (26.54) \end{gathered}$
	E	$\begin{gathered} 616,4 \\ (24.27) \end{gathered}$	235 (9.25)	$4 \times \mathrm{M} 8$	
	F	810 (31.89)	300 (11.81)	$4 \times \mathrm{M} 8$	
	FX	$\begin{aligned} & 1375,5 \\ & (54.14) \end{aligned}$	250 (9.84)	$6 \times \mathrm{M} 8$	$\begin{gathered} 13,0 \\ (115.02) \end{gathered}$
	GX	$\begin{aligned} & 1508,5 \\ & (59.38) \end{aligned}$	250 (9.84)	$6 \times \mathrm{M} 8$	$\begin{gathered} 13,0 \\ (115.02) \end{gathered}$

Fig. 1-1 Mounting dimensions

2 Electrical Installation

2.1 Technical Specifications

Input voltage range 1 AC $200 \mathrm{~V}-240 \mathrm{~V}, \pm 10 \%$
(Unfiltered and with built in Class A Filter)

Order No 6SE6440-	2AB $2 U C$	$\begin{aligned} & 11- \\ & 2 A A 1 \end{aligned}$	$\begin{gathered} \text { 12- } \\ \text { 5AA1 } \end{gathered}$	$\begin{gathered} \text { 13- } \\ \text { 7AA1 } \end{gathered}$	$\begin{gathered} \text { 15- } \\ \text { 5AA1 } \end{gathered}$	$\begin{gathered} \text { 17- } \\ \text { 5AA1 } \end{gathered}$	$\begin{gathered} \text { 21- } \\ \text { 1BA1 } \end{gathered}$	$\begin{gathered} \text { 21- } \\ \text { 5BA1 } \end{gathered}$	$\begin{gathered} \text { 22- } \\ \text { 2BA1 } \end{gathered}$	$\begin{gathered} \text { 23- } \\ \text { 0CA1 } \end{gathered}$
Frame Size		A					B			C
Output Rating (CT)	[kW] [hp]	$\begin{aligned} & 0,12 \\ & 0,16 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0,25 \\ & 0,33 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0,37 \\ 0,5 \\ \hline \end{gathered}$	$\begin{aligned} & 0,55 \\ & 0,75 \\ & \hline \end{aligned}$	$\begin{gathered} 0,75 \\ 1,0 \end{gathered}$	$\begin{aligned} & 1,1 \\ & 1,5 \end{aligned}$	$\begin{aligned} & 1,5 \\ & 2,0 \end{aligned}$	$\begin{aligned} & 2,2 \\ & 3,0 \end{aligned}$	$\begin{aligned} & 3,0 \\ & 4,0 \end{aligned}$
Output Power	[kVA]	0,4	0,7	1,0	1,3	1,7	2,4	3,2	4,6	6,0
CT Input Current 1)				4,6	6,2	8,2	11,0	14,4	20,2	35,5
CT Output Current	[A]	0,9	1,7	2,3	3,0	3,9	5,5	7,4	10,4	13,6
Fuse										
Recommended	3NA	3803	3803	3803	3805	3805	3807	3807	3812	3817
for UL specified		*	*	*	*	*	*	*	*	*
Input Cable Min.					16	16	14	14	12	10
Input Cable Max.	[mm^{2}] [awg]	$\begin{gathered} 2,5 \\ 14 \\ \hline \end{gathered}$	$\begin{gathered} 6,0 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} 6,0 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} 6,0 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} 10,0 \\ 8 \\ \hline \end{gathered}$				
Output Cable Min.	[mm^{2}] [awg]	$\begin{aligned} & 1,0 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,0 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,0 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,0 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,0 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,0 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,0 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,0 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,5 \\ & 16 \\ & \hline \end{aligned}$
Output Cable Max.	[mm^{2}] [awg]	$\begin{gathered} 2,5 \\ 14 \\ \hline \end{gathered}$	$\begin{array}{r} 2,5 \\ 14 \\ \hline \end{array}$	$\begin{gathered} 2,5 \\ 14 \\ \hline \end{gathered}$	$\begin{array}{r} 2,5 \\ 14 \\ \hline \end{array}$	$\begin{array}{r} 2,5 \\ 14 \\ \hline \end{array}$	$\begin{gathered} 6,0 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} 6,0 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} 6,0 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} 10,0 \\ 8 \\ \hline \end{gathered}$
Weight (with built in Class A Filter)	[kg] [lbs]	$\begin{aligned} & 1,3 \\ & 2,9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,3 \\ & 2,9 \end{aligned}$	$\begin{aligned} & 1,3 \\ & 2,9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,3 \\ & 2,9 \end{aligned}$	$\begin{aligned} & 1,3 \\ & 2,9 \end{aligned}$	$\begin{aligned} & 3,4 \\ & 7,5 \end{aligned}$	$\begin{aligned} & 3,4 \\ & 7,5 \end{aligned}$	$\begin{aligned} & 3,4 \\ & 7,5 \end{aligned}$	$\begin{gathered} 5,7 \\ 12,5 \end{gathered}$
Weight (Unfiltered)	[kg] [lbs]	$\begin{aligned} & 1,3 \\ & 2,9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,3 \\ & 2,9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,3 \\ & 2,9 \end{aligned}$	$\begin{aligned} & 1,3 \\ & 2,9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,3 \\ & 2,9 \end{aligned}$	$\begin{aligned} & 3,3 \\ & 7,3 \\ & \hline \end{aligned}$	$\begin{aligned} & 3,3 \\ & 7,3 \end{aligned}$	$\begin{aligned} & 3,3 \\ & 7,3 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 5,5 \\ 12,1 \\ \hline \end{gathered}$
Tightening torques for power terminals	[Nm] [lbf.in]			$\begin{gathered} 1,1 \\ (10) \end{gathered}$				$\begin{gathered} 1,5 \\ (13,3) \end{gathered}$		$\begin{aligned} & 2,25 \\ & (20) \end{aligned}$

1) Secondary conditions:

Input current at the rated operating point - applies for the short-circuit voltage of the line supply $\mathrm{V}_{\mathrm{k}}=2 \%$ referred to the rated drive converter power and a rated line supply voltage of 240 V without line commutating reactor. If a line commutating reactor is used. the specified values are reduced by between 55% and 70%.

[^0]Input voltage range 3 AC 200 V - 240 V. $\pm 10 \%$
(with built in Class A Filter)

Order No.	6SE6440-	$\begin{gathered} \text { 2AC23- } \\ \text { 0CA1 } \end{gathered}$	$\begin{gathered} \text { 2AC24- } \\ \text { 0CA1 } \end{gathered}$	$\begin{gathered} \text { 2AC25- } \\ \text { 5CA1 } \end{gathered}$
Frame Size		C		
Output Rating(CT)	[kW] [hp]	$\begin{aligned} & 3,0 \\ & 4,0 \end{aligned}$	$\begin{aligned} & 4,0 \\ & 5,0 \end{aligned}$	$\begin{aligned} & 5,5 \\ & 7,5 \end{aligned}$
Output Power	[kVA]	6,0	7,7	9,6
CT Input Current 1)	[A]	15,6	19,7	26,5
CT-Output Current	[A]	13,6	17,5	22,0
VT Input Current 1)	[A]	-	28,3	34,2
VT-Output Current	[A]	-	22,0	28,0
Fuse	[A]	25	32	35
Recommended	3NA	3810	3812	3814
For UL specified		*	*	*
Input Cable, min.	[mm^{2}] [awg]	$\begin{array}{r} 2,5 \\ 14 \\ \hline \end{array}$	$\begin{gathered} 4,0 \\ 12 \\ \hline \end{gathered}$	$\begin{aligned} & 4,0 \\ & 12 \\ & \hline \end{aligned}$
Input Cable, max.	[mm^{2}] [awg]	$\begin{gathered} 10,0 \\ 8 \end{gathered}$	$\begin{gathered} 10,0 \\ 8 \end{gathered}$	$\begin{gathered} 10,0 \\ 8 \end{gathered}$
Output Cable, min.	[mm^{2}] [awg]	$\begin{aligned} & 1,5 \\ & 16 \\ & \hline \end{aligned}$	$\begin{gathered} 4,0 \\ 12 \end{gathered}$	$\begin{gathered} 4,0 \\ 12 \end{gathered}$
Output Cable, max.	[mm^{2}] [awg]	$\begin{gathered} \hline 10,0 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 10,0 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} \hline 10,0 \\ 8 \\ \hline \end{gathered}$
Weight	[kg] [lbs]	$\begin{gathered} 5,7 \\ 12,5 \end{gathered}$	$\begin{gathered} 5,7 \\ 12,5 \end{gathered}$	$\begin{gathered} 5,7 \\ 12,5 \end{gathered}$
Tightening torques for power terminals	[Nm] [Ibf.in]		$\begin{aligned} & 2,25 \\ & (20) \\ & \hline \end{aligned}$	

1) Secondary conditions: Input current at the rated operating point - applies for the short-circuit voltage of the line supply $\mathrm{V}_{\mathrm{k}}=2 \%$ referred to the rated drive converter power and a rated line supply voltage of 240 V without line commutating reactor. If a line commutating reactor is used. the specified values are reduced by between 55% and 70%.
[^1]Input voltage range
3 AC 200 V - 240 V. ± 10 \%
(Unfiltered)

Order No.	6SE6440-	$\begin{aligned} & \hline \text { 2UC11 } \\ & \text {-2AA1 } \end{aligned}$	$\begin{aligned} & \hline \text { 2UC12 } \\ & \text {-5AA1 } \end{aligned}$	$\begin{aligned} & \text { 2UC13 } \\ & \text {-7AA1 } \end{aligned}$	$\begin{aligned} & \hline \text { 2UC15 } \\ & \text {-5AA1 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2UC17 } \\ & \text {-5AA1 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 2UC21 } \\ \text {-1BA1 } \end{array}$	$\begin{aligned} & \hline \text { 2UC21 } \\ & \text {-5BA1 } \end{aligned}$	$\begin{aligned} & \hline \text { 2UC22 } \\ & \text {-2BA1 } \end{aligned}$	$\begin{aligned} & \text { 2UC23 } \\ & \text {-0CA1 } \end{aligned}$
Frame Size		A			B			C		
Output Rating(CT)	[kW] [hp]	$\begin{aligned} & 0,12 \\ & 0,16 \end{aligned}$	$\begin{aligned} & 0,25 \\ & 0,33 \end{aligned}$	$\begin{gathered} 0,37 \\ 0,5 \\ \hline \end{gathered}$	$\begin{aligned} & 0,55 \\ & 0,75 \end{aligned}$	$\begin{gathered} 0,75 \\ 1,0 \end{gathered}$	$\begin{aligned} & 1,1 \\ & 1,5 \end{aligned}$	$\begin{aligned} & 1,5 \\ & 2,0 \end{aligned}$	$\begin{aligned} & 2,2 \\ & 3,0 \end{aligned}$	$\begin{aligned} & 3,0 \\ & 4,0 \end{aligned}$
Output Power	[kVA]	0,4	0,7	1,0	1,3	1,7	2,4	3,2	4,6	6,0
CT-Input Current 1)	[A]	1,1	1,9	2,7	3,6	4,7	6,4	8,3	11,7	15,6
CT-Output Current	[A]	0,9	1,7	2,3	3,0	3,9	5,5	7,4	10,4	13,6
Fuse	[A]	10	10	10	16	16	20	20	25	25
Recommended	3NA	3803	3803	3803	3805	3805	3807	3807	3810	3810
For UL specified		*	*	*	*	*	*	*	*	*
Input Cable, min.	$\begin{aligned} & \hline\left[\mathrm{mm}^{2}{ }^{2}\right] \\ & \text { [awgl } \end{aligned}$	$\begin{aligned} & 1,0 \\ & 18 \end{aligned}$	$\begin{aligned} & 1,0 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,0 \\ & 18 \end{aligned}$	$\begin{aligned} & 1,5 \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,5 \\ & 16 \\ & \hline \end{aligned}$	$\begin{gathered} 2,5 \\ 14 \\ \hline \end{gathered}$	$\begin{gathered} 2,5 \\ 14 \\ \hline \end{gathered}$	$\begin{gathered} \hline 2,5 \\ 14 \end{gathered}$	$\begin{gathered} 4,0 \\ 12 \\ \hline \end{gathered}$
Input Cable, max.	$\left[\mathrm{mm}^{2}\right]$ [awg]	$\begin{gathered} 2,5 \\ 14 \end{gathered}$	$\begin{gathered} 2,5 \\ 14 \end{gathered}$	$\begin{gathered} 2,5 \\ 14 \end{gathered}$	$\begin{aligned} & \hline 2,5 \\ & 14 \end{aligned}$	$\begin{gathered} 2,5 \\ 14 \end{gathered}$	$\begin{aligned} & 6,0 \\ & 10 \\ & \hline \end{aligned}$	$\begin{gathered} 6,0 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & 6,0 \\ & 10 \\ & \hline \end{aligned}$	$\begin{gathered} 10,0 \\ 8 \end{gathered}$
Output Cable, min.	$\begin{gathered} {\left[\mathrm{mm}^{2}\right]} \\ {[\mathrm{awg}]} \end{gathered}$	$\begin{aligned} & 1,0 \\ & 18 \end{aligned}$	$\begin{aligned} & 1,0 \\ & 18 \end{aligned}$	$\begin{aligned} & 1,0 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,0 \\ & 18 \end{aligned}$	$\begin{aligned} & 1,0 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,0 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,0 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,0 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,5 \\ & 16 \end{aligned}$
Output Cable, max.	[mm^{2}] [awg]	$\begin{array}{r} 2,5 \\ 14 \\ \hline \end{array}$	$\begin{array}{r} 2,5 \\ 14 \\ \hline \end{array}$	$\begin{array}{r} 2,5 \\ 14 \\ \hline \end{array}$	$\begin{gathered} 2,5 \\ 14 \\ \hline \end{gathered}$	$\begin{aligned} & 2,5 \\ & 14 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6,0 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6,0 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6,0 \\ & 10 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 10,0 \\ 8 \end{gathered}$
Weight	$\begin{aligned} & {[\mathrm{kg]}} \\ & {[\mathrm{lbs}]} \end{aligned}$	$\begin{aligned} & 1,3 \\ & 2,9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,3 \\ & 2,9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,3 \\ & 2,9 \end{aligned}$	$\begin{aligned} & 1,3 \\ & 2,9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,3 \\ & 2,9 \\ & \hline \end{aligned}$	$\begin{aligned} & 3,3 \\ & 7,3 \end{aligned}$	$\begin{aligned} & 3,3 \\ & 7,3 \\ & \hline \end{aligned}$	$\begin{aligned} & 3,3 \\ & 7,3 \\ & \hline \end{aligned}$	$\begin{gathered} 5,5 \\ 12,1 \\ \hline \end{gathered}$
Tightening torques for power terminals	[Nm] [lbf.in]		$\begin{gathered} \hline 1,1 \\ (10) \\ \hline \end{gathered}$			$\begin{gathered} 1,5 \\ (13,3) \\ \hline \end{gathered}$			$\begin{aligned} & 2,25 \\ & (20) \\ & \hline \end{aligned}$	

Order No.	6SE6440-	$\begin{array}{\|c} \hline \text { 2UC24- } \\ \text { OCA1 } \\ \hline \end{array}$	$\begin{array}{r} 2 \mathrm{UCC25} \\ 5 \mathrm{CA} 1 \\ \hline \end{array}$	$\begin{array}{r} 2 U C 27- \\ 5 D A 1 \\ \hline \end{array}$	$\begin{gathered} \text { 2UC31- } \\ \hline 1 \text { DA1 } \\ \hline \end{gathered}$	$\begin{array}{r} \text { 2UC31- } \\ \text { 5DA1 } \\ \hline \end{array}$	$\begin{array}{\|c} 2 \mathrm{2UC31} \\ 8 \mathrm{EA} 1 \\ \hline \end{array}$	$\begin{gathered} 2 U C 32- \\ 2 E A 1 \\ \hline \end{gathered}$	$\begin{gathered} \text { 2UC33- } \\ \hline \text { OFA1 } \\ \hline \end{gathered}$	$\begin{gathered} \text { 2UC33- } \\ \text { 7FA1 } \\ \hline \end{gathered}$	$\begin{gathered} \text { 2UC34- } \\ \text { 5FA1 } \\ \hline \end{gathered}$
Frame Size		C		D			E		F		
Output Rating(CT)	[kW] [hp]	$\begin{aligned} & 4,0 \\ & 5,0 \end{aligned}$	$\begin{aligned} & 5,5 \\ & 7,5 \end{aligned}$	$\begin{gathered} 7,5 \\ 10,0 \end{gathered}$	$\begin{aligned} & 11,0 \\ & 15,0 \end{aligned}$	$\begin{aligned} & 15,0 \\ & 20,0 \end{aligned}$	$\begin{aligned} & 18,5 \\ & 25,0 \end{aligned}$	$\begin{aligned} & 22,0 \\ & 30,0 \end{aligned}$	$\begin{array}{r} 30,0 \\ 40,0 \\ \hline \end{array}$	$\begin{aligned} & 37,0 \\ & 50,0 \end{aligned}$	$\begin{aligned} & 45,0 \\ & 60,0 \\ & \hline \end{aligned}$
Output Power	[kVA]	7,7	9,6	12,3	18,4	23,7	29,8	35,1	45,6	57,0	67,5
CT-Input Current 1)	[A]	19,7	26,5	34,2	38,0	50,0	62,0	71,0	96,0	114,0	135,0
CT-Output Current	[A]	17,5	22,0	28,0	42,0	54,0	68,0	80,0	104,0	130,0	154,0
VT-Input Current 1)	[A]	28,3	34,2	38,0	50,0	62,0	71,0	96,0	114,0	135,0	164,0
VT-Output Current	[A]	22,0	28,0	42,0	54,0	68,0	80,0	104,0	130,0	154,0	
Fuse	[A]	32	35	50	80	80	100	125	200	200	250
Recommended	3NA	3812	3814	3820	3824	3824	3830	3032	3140	3142	3144
For UL specified	3NE	*	*	1817-0	1820-0	1820-0	1021-0	1022-0	1225-0	1225-0	1227-0
Input Cable, min.	$\begin{aligned} & \hline\left[\mathrm{mm}^{2}{ }^{2}\right] \\ & \text { [awal } \end{aligned}$	$\begin{gathered} 4,0 \\ 12 \end{gathered}$	$\begin{gathered} 4,0 \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} \hline 10,0 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 16,0 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 16,0 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 25,0 \\ 3 \end{gathered}$	$\begin{gathered} \hline 25,0 \\ 3 \end{gathered}$	$\begin{gathered} 70,0 \\ 2 / 0 \\ \hline \end{gathered}$	$\begin{gathered} 70,0 \\ 2 / 0 \\ \hline \end{gathered}$	$\begin{gathered} 95,0 \\ 3 / 0 \\ \hline \end{gathered}$
Input Cable, max.	$\begin{aligned} & {\left[\mathrm{mm}^{2}\right]} \\ & {[\mathrm{awg}]} \end{aligned}$	$\begin{gathered} 10,0 \\ 8 \end{gathered}$	$\begin{gathered} \hline 10,0 \\ 8 \end{gathered}$	$\begin{gathered} 35,0 \\ 2 \end{gathered}$	$\begin{gathered} 150,0 \\ 300 \end{gathered}$	$\begin{gathered} 150,0 \\ 300 \end{gathered}$	$\begin{gathered} 150,0 \\ 300 \end{gathered}$				
Output Cable, min.	$\begin{aligned} & {\left[\mathrm{mm}^{2}\right]} \\ & {[\mathrm{awg}]} \end{aligned}$	$\begin{aligned} & 4,0 \\ & 12 \\ & \hline \end{aligned}$	$\begin{gathered} 4,0 \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} 10,0 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 16,0 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 16,0 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 25,0 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 25,0 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 50,0 \\ 1 / 0 \\ \hline \end{gathered}$	$\begin{gathered} 70,0 \\ 2 / 0 \\ \hline \end{gathered}$	$\begin{gathered} 95,0 \\ 3 / 0 \\ \hline \end{gathered}$
Output Cable, max	$\left[\mathrm{mm}^{2}\right]$ [awg]	$\begin{gathered} 10,0 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 10,0 \\ 8 \end{gathered}$	$\begin{gathered} 35,0 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 35,0 \\ 2 \end{gathered}$	$\begin{gathered} 35,0 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 35,0 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 35,0 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 150,0 \\ 300 \\ \hline \end{gathered}$	$\begin{gathered} 150,0 \\ 300 \\ \hline \end{gathered}$	$\begin{gathered} 150,0 \\ 300 \end{gathered}$
Weight	$\begin{aligned} & {[\mathrm{kg}]} \\ & {[\mathrm{lbs}]} \end{aligned}$	$\begin{gathered} \hline 5,5 \\ 12,1 \end{gathered}$	$\begin{gathered} \hline 5,5 \\ 12,1 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 17,0 \\ & 37,0 \end{aligned}$	$\begin{aligned} & 16,0 \\ & 35,0 \\ & \hline \end{aligned}$	$\begin{aligned} & 16,0 \\ & 35,0 \\ & \hline \end{aligned}$	$\begin{aligned} & 20,0 \\ & 44,0 \\ & \hline \end{aligned}$	$\begin{aligned} & 20,0 \\ & 44,0 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 55,0 \\ 121,0 \end{gathered}$	$\begin{gathered} \hline 55,0 \\ 121,0 \\ \hline \end{gathered}$	$\begin{gathered} \hline 55,0 \\ 121,0 \\ \hline \end{gathered}$
Tightening torques for power terminals	[Nm] [lbf.in]					$\begin{gathered} 10 \\ (89) \\ \hline \end{gathered}$				$\begin{gathered} \hline 50 \\ (445) \\ \hline \end{gathered}$	

1) Secondary conditions: Input current at the rated operating point - applies for the short-circuit voltage of the line supply $\mathrm{V}_{\mathrm{k}}=2 \%$ referred to the rated drive converter power and a rated line supply voltage of 240 V without line commutating reactor. If a line commutating reactor is used. the specified values are reduced by between 55% and 70%.
[^2]Input voltage range
(with built in Class A Filter) $\quad 380$ V - 480 V. $\pm 10 \%$
(with built in Class A Filter)

Order No.	6SE6440-	$\begin{gathered} \text { 2AD22- } \\ \text { 2BA1 } \end{gathered}$	$\begin{gathered} \text { 2AD23- } \\ \text { 0BA1 } \\ \hline \end{gathered}$	$\begin{gathered} \text { 2AD24- } \\ \text { 0BA1 } \end{gathered}$	$\begin{gathered} \text { 2AD25- } \\ \text { 5CA1 } \end{gathered}$	$\begin{gathered} \hline \text { 2AD27- } \\ \text { 5CA1 } \\ \hline \end{gathered}$	$\begin{gathered} \text { 2AD31- } \\ \text { 1CA1 } \\ \hline \end{gathered}$	$\begin{gathered} \text { 2AD31- } \\ \text { 5DA1 } \end{gathered}$
Frame Size		B			C			D
Output Rating(CT)	[kW] [hp]	$\begin{aligned} & 2,2 \\ & 3,0 \end{aligned}$	$\begin{aligned} & 3,0 \\ & 4,0 \end{aligned}$	$\begin{aligned} & 4,0 \\ & 5,0 \end{aligned}$	$\begin{aligned} & 5,5 \\ & 7,5 \end{aligned}$	$\begin{gathered} 7,5 \\ 10,0 \end{gathered}$	$\begin{aligned} & 11,0 \\ & 15,0 \end{aligned}$	$\begin{aligned} & 15,0 \\ & 20,0 \end{aligned}$
Output Power	[kVA]	4,5	5,9	7,8	10,1	14,0	19,8	24,4
CT-Input Current 1)	[A]	7,5	10,0	12,8	15,6	22,0	23,1	33,8
CT-Output Current	[A]	5,9	7,7	10,2	13,2	18,4	26,0	32,0
VT-Input Current 1)	[A]	-	-	-	17,3	23,1	33,8	37,0
VT-Output Current	[A]	-	-	-	20,2	29,0	39,0	45,2
Fuse	[A]	16	16	20	20	32	35	50
Recommended	3NA	3805	3805	3807	3807	3812	3814	3820
For UL specified	3NE	*	*	*	*	*	*	1817-0
Input Cable, min.	[mm^{2}] [awg]	$\begin{aligned} & 1,5 \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,5 \\ & 16 \end{aligned}$	$\begin{gathered} 2,5 \\ 14 \\ \hline \end{gathered}$	$\begin{gathered} 2,5 \\ 14 \\ \hline \end{gathered}$	$\begin{gathered} 4,0 \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} 6,0 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} 10,0 \\ 8 \\ \hline \end{gathered}$
Input Cable, max.	[mm^{2}] [awg]	$\begin{gathered} 6,0 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} 6,0 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & 6,0 \\ & 10 \\ & \hline \end{aligned}$	$\begin{gathered} 10,0 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 10,0 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 10,0 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 35,0 \\ 2 \\ \hline \end{gathered}$
Output Cable, min.	[mm^{2}] [awg]	$\begin{aligned} & 1,0 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,0 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,0 \\ & 18 \\ & \hline \end{aligned}$	$\begin{gathered} 2,5 \\ 14 \\ \hline \end{gathered}$	$\begin{gathered} 4,0 \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} 6,0 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} 10,0 \\ 8 \\ \hline \end{gathered}$
Output Cable, max.	[mm^{2}] [awg]	$\begin{gathered} 6,0 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} 6,0 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} 6,0 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} 10,0 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 10,0 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 10,0 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 35,0 \\ 2 \\ \hline \end{gathered}$
Weight	[kg] [lbs]	$\begin{aligned} & 3,4 \\ & 7,5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3,4 \\ & 7,5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3,4 \\ & 7,5 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 5,7 \\ 12,5 \\ \hline \end{gathered}$	$\begin{gathered} \hline 5,7 \\ 12,5 \\ \hline \end{gathered}$	$\begin{gathered} \hline 5,7 \\ 12,5 \\ \hline \end{gathered}$	$\begin{aligned} & 17,0 \\ & 37,0 \\ & \hline \end{aligned}$
Tightening torques for power terminals	[Nm] [lbf.in]		$\begin{array}{r} 1,1 \\ (10) \\ \hline \end{array}$			$\begin{gathered} 1,5 \\ (13,3) \end{gathered}$		$\begin{aligned} & 2,25 \\ & (20) \\ & \hline \end{aligned}$

Order No.	6SE6440-	$\begin{gathered} \text { 2AD31- } \\ \text { 8DA1 } \end{gathered}$	$\begin{gathered} \text { 2AD32- } \\ \text { 2DA1 } \end{gathered}$	$\begin{gathered} \text { 2AD33- } \\ \text { OEA1 } \end{gathered}$	$\begin{gathered} \text { 2AD33- } \\ \text { 7EA1 } \end{gathered}$	$\begin{gathered} \text { 2AD34- } \\ \text { 5FA1 } \\ \hline \end{gathered}$	$\begin{gathered} \text { 2AD35- } \\ \text { 5FA1 } \end{gathered}$	$\begin{gathered} \text { 2AD37- } \\ \text { 5FA1 } \end{gathered}$
Frame Size		D		E		F		
Output Rating(CT)	$[k W]$ [hp]	$\begin{aligned} & 18,5 \\ & 25,0 \\ & \hline \end{aligned}$	$\begin{aligned} & 22,0 \\ & 30,0 \\ & \hline \end{aligned}$	$\begin{aligned} & 30,0 \\ & 40,0 \\ & \hline \end{aligned}$	$\begin{aligned} & 37,0 \\ & 50,0 \\ & \hline \end{aligned}$	$\begin{aligned} & 45,0 \\ & 60,0 \\ & \hline \end{aligned}$	$\begin{aligned} & 55,0 \\ & 75,0 \\ & \hline \end{aligned}$	$\begin{gathered} 75,0 \\ 100,0 \\ \hline \end{gathered}$
Output Power	[kVA]	29,0	34,3	47,3	57,2	68,6	83,8	110,5
CT-Input Current 1)	[A]	37,0	43,0	59,0	72,0	87,0	104,0	139,0
CT-Output Current	[A]	38,0	45,0	62,0	75,0	90,0	110,0	145,0
VT-Input Current 1)	[A]	43,0	59,0	72,0	87,0	104,0	139,0	169,0
VT-Output Current	[A]	45,0	62,0	75,0	90,0	110,0	145,0	178,0
Fuse	[A]	63	80	100	125	160	200	250
Recommended	3NA	3822	3824	3830	3832	3836	3140	3144
For UL specified	3NE	1818-0	1820-0	1021-0	1022-0	1224-0	1225-0	1227-0
Input Cable, min.	[mm^{2}] [awg]	$\begin{gathered} \hline 10,0 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 16,0 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 25,0 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 25,0 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 35,0 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 70,0 \\ 2 / 0 \\ \hline \end{gathered}$	$\begin{gathered} 95,0 \\ 3 / 0 \\ \hline \end{gathered}$
Input Cable, max.	[mm^{2}] [awg]	$\begin{gathered} 35,0 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 35,0 \\ 2 \end{gathered}$	$\begin{gathered} 35,0 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 35,0 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 150,0 \\ 300 \\ \hline \end{gathered}$	$\begin{gathered} 150,0 \\ 300 \\ \hline \end{gathered}$	$\begin{gathered} 150,0 \\ 300 \\ \hline \end{gathered}$
Output Cable, min.	[mm^{2}] [awg]	$\begin{gathered} 10,0 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 16,0 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 25,0 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 25,0 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 50,0 \\ 1 / 0 \\ \hline \end{gathered}$	$\begin{gathered} \hline 70,0 \\ 2 / 0 \\ \hline \end{gathered}$	$\begin{gathered} \hline 95,0 \\ 3 / 0 \\ \hline \end{gathered}$
Output Cable, max.	[mm^{2}] [awg]	$\begin{gathered} 35,0 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 150,0 \\ 300 \\ \hline \end{gathered}$	$\begin{gathered} 150,0 \\ 300 \\ \hline \end{gathered}$	$\begin{gathered} 150,0 \\ 300 \\ \hline \end{gathered}$			
Weight	[kg] [lbs]	$\begin{aligned} & \hline 17,0 \\ & 37,0 \end{aligned}$	$\begin{aligned} & \hline 17,0 \\ & 37,0 \end{aligned}$	$\begin{aligned} & \hline 22,0 \\ & 48,0 \\ & \hline \end{aligned}$	$\begin{aligned} & 22,0 \\ & 48,0 \\ & \hline \end{aligned}$	$\begin{gathered} 75,0 \\ 165,0 \\ \hline \end{gathered}$	$\begin{gathered} 75,0 \\ 165,0 \\ \hline \end{gathered}$	$\begin{gathered} 75,0 \\ 165,0 \\ \hline \end{gathered}$
Tightening torques for power terminals	[Nm] [lbf.in]						$\begin{gathered} 50 \\ (445) \\ \hline \end{gathered}$	

1) Secondary conditions: Input current at the rated operating point - applies for the short-circuit voltage of the line supply $\mathrm{V}_{\mathrm{k}}=2 \%$ referred to the rated drive converter power and a rated line supply voltage of 400 V without line commutating reactor. If a line commutating reactor is used. the specified values are reduced by between 70 \% and 80 \%.
[^3]Input voltage range
3 AC 380 V-480 V. ± 10 \%
(Unfiltered)

Order No.	6SE6440-	$\begin{aligned} & \text { 2UD13 } \\ & \text {-7AA1 } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { 2UD15 } \\ \text {-5AA1 } \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { 2UD17 } \\ \text {-5AA1 } \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { 2UD21 } \\ \text {-1AA1 } \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { 2UD21 } \\ \text {-5AA1 } \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { 2UD22 } \\ \text {-2BA1 } \end{array}$	$\begin{array}{\|l\|} \hline \text { 2UD23 } \\ \text {-0BA1 } \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { 2UD24 } \\ \text {-0BA1 } \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { 2UD25 } \\ \text {-5CA1 } \\ \hline \end{array}$	$\begin{aligned} & \text { 2UD27 } \\ & \hline \end{aligned}$
Frame Size		A					B			C	
Output Rating(CT)	[kW] [hp]	$\begin{gathered} 0,37 \\ 0,5 \\ \hline \end{gathered}$	$\begin{aligned} & 0,55 \\ & 0,75 \end{aligned}$	$\begin{gathered} 0,75 \\ 1,0 \\ \hline \end{gathered}$	$\begin{aligned} & 1,1 \\ & 1,5 \end{aligned}$	$\begin{aligned} & 1,5 \\ & 2,0 \end{aligned}$	$\begin{aligned} & 2,2 \\ & 3,0 \end{aligned}$	$\begin{aligned} & \hline 3,0 \\ & 4,0 \end{aligned}$	$\begin{aligned} & 4,0 \\ & 5,0 \end{aligned}$	$\begin{aligned} & \hline 5,5 \\ & 7,5 \end{aligned}$	$\begin{gathered} \hline 7,5 \\ 10,0 \end{gathered}$
Output Power	[kVA]	0,9	1,2	1,6	2,3	3,0	4,5	5,9	7,8	10,1	14,0
CT-Input Current 1)	[A]	2,2	2,8	3,7	4,9	5,9	7,5	10,0	12,8	15,6	22,0
CT-Output Current	[A]	1,3	1,7	2,2	3,1	4,1	5,9	7,7	10,2	13,2	19,0
VT-Input Current 1)	[A]	-	-	-	-	-	-	-	-	17,3	23,1
VT-Output Current	[A]	-	-	-	-	-	-	-	-	19,0	26,0
Fuse	[A]	10	10	10	10	10	16	16	20	20	32
Recommended	3NA	3803	3803	3803	3803	3803	3805	3805	3807	3807	3812
For UL specified		*	*	*	*	*	*	*	*	*	*
Input Cable, min.	$\begin{aligned} & {\left[\mathrm{mm}^{2}\right]} \\ & {[\mathrm{awg}]} \\ & \hline \end{aligned}$	$\begin{aligned} & 1,0 \\ & 18 \end{aligned}$	$\begin{aligned} & 1,0 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,0 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,0 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,0 \\ & 18 \end{aligned}$	$\begin{aligned} & 1,5 \\ & 16 \end{aligned}$	$\begin{aligned} & 1,5 \\ & 16 \end{aligned}$	$\begin{gathered} 2,5 \\ 14 \end{gathered}$	$\begin{gathered} 2,5 \\ 14 \end{gathered}$	$\begin{gathered} 4,0 \\ 12 \end{gathered}$
Input Cable, max.	$\begin{aligned} & {\left[\mathrm{mm}^{2}\right]} \\ & {[\mathrm{awg}]} \end{aligned}$	$\begin{gathered} 2,5 \\ 14 \end{gathered}$	$\begin{gathered} 2,5 \\ 14 \end{gathered}$	$\begin{gathered} 2,5 \\ 14 \\ \hline \end{gathered}$	$\begin{gathered} 2,5 \\ 14 \\ \hline \end{gathered}$	$\begin{gathered} 2,5 \\ 14 \end{gathered}$	$\begin{aligned} & 6,0 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 6,0 \\ & 10 \end{aligned}$	$\begin{aligned} & 6,0 \\ & 10 \end{aligned}$	$\begin{gathered} 10,0 \\ 8 \end{gathered}$	$\begin{gathered} 10,0 \\ 8 \end{gathered}$
Output Cable, min.	$\left[\mathrm{mm}^{2}\right]$ [awg]	$\begin{aligned} & 1,0 \\ & 18 \end{aligned}$	$\begin{gathered} 2,5 \\ 14 \end{gathered}$	$\begin{gathered} 4,0 \\ 12 \end{gathered}$							
Output Cable, max.	$\left[\mathrm{mm}^{2}\right]$ [awg]	$\begin{gathered} 2,5 \\ 14 \end{gathered}$	$\begin{aligned} & \hline 6,0 \\ & 10 \end{aligned}$	$\begin{gathered} 6,0 \\ 10 \end{gathered}$	$\begin{gathered} 6,0 \\ 10 \end{gathered}$	$\begin{gathered} 10,0 \\ 8 \end{gathered}$	$\begin{gathered} 10,0 \\ 8 \\ \hline \end{gathered}$				
Weight	$\begin{aligned} & {[\mathrm{kg}]} \\ & {[\mathrm{lbs}]} \end{aligned}$	$\begin{array}{r} 1,3 \\ 2,9 \\ \hline \end{array}$	$\begin{aligned} & 1,3 \\ & 2,9 \\ & \hline \end{aligned}$	$\begin{array}{r} 1,3 \\ 2,9 \\ \hline \end{array}$	$\begin{array}{r} 1,3 \\ 2,9 \\ \hline \end{array}$	$\begin{aligned} & 1,3 \\ & 2,9 \\ & \hline \end{aligned}$	3,3 7,3	$\begin{aligned} & \hline 3,3 \\ & 7,3 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3,3 \\ & 7,3 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 5,5 \\ 12,1 \\ \hline \end{array}$	$\begin{gathered} \hline 5,5 \\ 12,1 \\ \hline \end{gathered}$
Tightening torques for power terminals	[Nm] [lbf.in]			$\begin{gathered} \hline 1,1 \\ (10) \\ \hline \end{gathered}$				$\begin{gathered} 1,5 \\ (13,3) \\ \hline \end{gathered}$			

Order No.	6SE6440-	$\begin{aligned} & \hline \text { 2UD31 } \\ & \text {-1CA1 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 2UD31 } \\ \text {-5DA1 } \end{array}$	$\begin{array}{\|l\|} \hline \text { 2UD31 } \\ \text {-8DA1 } \end{array}$	$\begin{aligned} & \hline \text { 2UD32 } \\ & \text {-2DA1 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 2UD33 } \\ & \text {-0EA1 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 2UD33 } \\ \text {-7EA1 } \end{array}$	$\begin{array}{\|l\|} \hline \text { 2UD34 } \\ \text {-5FA1 } \end{array}$	$\begin{array}{\|l\|} \hline \text { 2UD35 } \\ \text {-5FA1 } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { 2UD37 } \\ \text {-5FA1 } \\ \hline \end{array}$
Frame Size		C	D			E		F		
Output Rating(CT)	$\begin{aligned} & {[\mathrm{kW}]} \\ & {[\mathrm{hp}]} \end{aligned}$	$\begin{aligned} & 11,0 \\ & 15,0 \end{aligned}$	$\begin{array}{r} 15,0 \\ 20,0 \\ \hline \end{array}$	$\begin{aligned} & \hline 18,5 \\ & 25,0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 22,0 \\ & 30,0 \end{aligned}$	$\begin{aligned} & \hline 30,0 \\ & 40,0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 37,0 \\ 50,0 \\ \hline \end{array}$	$\begin{aligned} & \hline 45,0 \\ & 60,0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 55,0 \\ & 75,0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 75,0 \\ & 100,0 \\ & \hline \end{aligned}$
Output Power	[kVA]	19,8	24,4	29,0	34,3	47,3	57,2	68,6	83,8	110,5
CT-Input Current 1)	[A]	23,1	33,8	37,0	43,0	59,0	72,0	87,0	104,0	139,0
CT-Output Current	[A]	26,0	32,0	38,0	45,0	62,0	75,0	90,0	110,0	145,0
VT-Input Current 1)	[A]	33,8	37,0	43,0	59,0	72,0	87,0	104,0	139,0	169,0
VT-Output Current	[A]	32,0	38,0	45,0	62,0	75,0	90,0	110,0	145,0	178,0
Fuse	[A]	35	50	63	80	100	125	160	200	250
Recommended	3NA	3814	3820	3822	3824	3830	3832	8036	3140	3144
For UL specified	3NE	*	1817-0	1818-0	1820-0	1021-0	1022-0	1224-0	1225-0	1227-0
Input Cable, min.	$\begin{aligned} & \hline\left[\mathrm{mm}^{2}\right] \\ & {[\mathrm{awg}]} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6,0 \\ & 10 \\ & \hline \end{aligned}$	$\begin{gathered} 10,0 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 10,0 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} \hline 16,0 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 25,0 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \hline 25,0 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 35,0 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 70,0 \\ 2 / 0 \\ \hline \end{gathered}$	$\begin{gathered} 95,0 \\ 3 / 0 \\ \hline \end{gathered}$
Input Cable, max.	$\begin{aligned} & {\left[\mathrm{mm}^{2}\right]} \\ & {[\mathrm{awg}]} \end{aligned}$	$\begin{gathered} 10,0 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} \hline 35,0 \\ 2 \end{gathered}$	$\begin{gathered} 35,0 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 35,0 \\ 2 \end{gathered}$	$\begin{gathered} 35,0 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 35,0 \\ 2 \end{gathered}$	$\begin{gathered} \hline 150,0 \\ 300 \\ \hline \end{gathered}$	$\begin{gathered} \hline 150,0 \\ 300 \\ \hline \end{gathered}$	$\begin{gathered} \hline 150,0 \\ 300 \\ \hline \end{gathered}$
Output Cable, min.	$\begin{aligned} & {\left[\mathrm{mm}^{2}\right]} \\ & {[\mathrm{awg}]} \end{aligned}$	$\begin{aligned} & 6,0 \\ & 10 \end{aligned}$	$\begin{gathered} 10,0 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 10,0 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 16,0 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 25,0 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 25,0 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 35,0 \\ 2 \end{gathered}$	$\begin{gathered} 70,0 \\ 2 / 0 \\ \hline \end{gathered}$	$\begin{gathered} 95,0 \\ 3 / 0 \\ \hline \end{gathered}$
Output Cable, max.	$\left[\mathrm{mm}^{2}\right]$	$\begin{gathered} \hline 10,0 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 35,0 \\ 2 \end{gathered}$	$\begin{gathered} 150,0 \\ 300 \\ \hline \end{gathered}$	$\begin{gathered} 150,0 \\ 300 \\ \hline \end{gathered}$	$\begin{gathered} 150,0 \\ 300 \\ \hline \end{gathered}$				
Weight	$\begin{aligned} & {[\mathrm{kg}]} \\ & {[\mathrm{lbs}]} \end{aligned}$	$\begin{gathered} \hline 5,5 \\ 12,1 \\ \hline \end{gathered}$	$\begin{aligned} & 16,0 \\ & 35,0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 16,0 \\ 35,0 \\ \hline \end{array}$	$\begin{array}{r} \hline 16,0 \\ 35,0 \\ \hline \end{array}$	$\begin{array}{r} \hline 20,0 \\ 44,0 \\ \hline \end{array}$	$\begin{array}{r} \hline 20,0 \\ 44,0 \\ \hline \end{array}$	$\begin{gathered} \hline 56,0 \\ 123,0 \\ \hline \end{gathered}$	$\begin{gathered} \hline 56,0 \\ 123,0 \\ \hline \end{gathered}$	$\begin{gathered} \hline 56,0 \\ 123,0 \\ \hline \end{gathered}$
Tightening torques for power terminals	[Nm] [lbf.in]	$\begin{aligned} & 2,25 \\ & (20) \\ & \hline \end{aligned}$			$\begin{gathered} 10 \\ (89) \\ \hline \end{gathered}$				$\begin{gathered} 50 \\ (445) \end{gathered}$	

1) Secondary conditions:

Input current at the rated operating point - applies for the short-circuit voltage of the line supply $\mathrm{V}_{\mathrm{k}}=2 \%$ referred to the rated drive converter power and a rated line supply voltage of 400 V without line commutating reactor. If a line commutating reactor is used. the specified values are reduced by between 70% and 80%.

[^4]Input voltage range
3 AC 380 V-480 V, ± 10 \%
(Unfiltered)

Order No.	6SE6440-	2UD38-8FA1	2UD41-1FA1	2UD41-3GA1	2UD41-6GA1	2UD42-0GA1
Frame Size		FX		GX		
Output Rating(CT)	[kW] [hp]	$\begin{gathered} 90 \\ 125 \end{gathered}$	$\begin{aligned} & 110 \\ & 150 \end{aligned}$	$\begin{aligned} & 132 \\ & 200 \end{aligned}$	$\begin{aligned} & 160 \\ & 250 \end{aligned}$	$\begin{aligned} & 200 \\ & 300 \end{aligned}$
Output Power	[kVA]	145,4	180	214,8	263,2	339,4
CT-Input Current 1)	[A]	169	200	245	297	354
CT-Output Current	[A]	178	205	250	302	370
VT-Input Current 1)	[A]	200	245	297	354	442
VT-Output Current	[A]	205	250	302	370	477
Recommendede Fuse	[A]	250	315	400	450	560
	3NE	1227-0	1230-0	1332-0	1333-0	1435-0
Pipe cable shoe to DIN 46235	[mm]	10	10	10	10	10
Input Cable, min.	[mm^{2}]	$\begin{gathered} 1 \times 95 \text { or } \\ 2 \times 35 \end{gathered}$	$\begin{gathered} 1 \times 150 \text { or } \\ 2 \times 50 \\ \hline \end{gathered}$	$\begin{gathered} 1 \times 185 \text { or } \\ 2 \times 70 \\ \hline \end{gathered}$	$\begin{gathered} 1 \times 240 \text { or } \\ 2 \times 70 \\ \hline \end{gathered}$	2×95
	[awg] or [kcmil]	$\begin{gathered} 1 \times 4 / 0 \text { or } \\ 2 \times 2 \end{gathered}$	$\begin{gathered} 1 \times 300 \text { or } \\ 2 \times 1 / 0 \end{gathered}$	$\begin{gathered} 1 \times 400 \text { or } \\ 2 \times 2 / 0 \end{gathered}$	$\begin{gathered} 1 \times 500 \text { or } \\ 2 \times 2 / 0 \end{gathered}$	$2 \times 4 / 0$
Input Cable, max.	[mm^{2}]	$\begin{gathered} 1 \times 185 \text { or } \\ 2 \times 120 \end{gathered}$	$\begin{gathered} 1 \times 185 \text { or } \\ 2 \times 120 \\ \hline \end{gathered}$	2×240	2×240	2×240
	[awg] or [kcmil]	$\begin{gathered} 1 \times 350 \text { or } \\ 2 \times 4 / 0 \\ \hline \end{gathered}$	$\begin{gathered} 1 \times 350 \text { or } \\ 2 \times 4 / 0 \\ \hline \end{gathered}$	2×400	2×400	2×400
Output Cable, min.	[mm^{2}]	$\begin{gathered} 1 \times 95 \text { or } \\ 2 \times 35 \end{gathered}$	$\begin{gathered} 1 \times 150 \text { or } \\ 2 \times 50 \end{gathered}$	$\begin{gathered} 1 \times 185 \text { or } \\ 2 \times 70 \\ \hline \end{gathered}$	$\begin{gathered} 1 \times 240 \text { or } \\ 2 \times 70 \\ \hline \end{gathered}$	2×95
	[awg] or [kcmil]	$\begin{gathered} 1 \times 4 / 0 \text { or } \\ 2 \times 2 \end{gathered}$	$\begin{gathered} 1 \times 300 \text { or } \\ 2 \times 1 / 0 \end{gathered}$	$\begin{gathered} 1 \times 400 \text { or } \\ 2 \times 2 / 0 \end{gathered}$	$\begin{gathered} 1 \times 500 \text { or } \\ 2 \times 2 / 0 \end{gathered}$	$2 \times 4 / 0$
Output Cable, max.	[mm^{2}]	$\begin{gathered} 1 \times 185 \text { or } \\ 2 \times 120 \\ \hline \end{gathered}$	$\begin{gathered} 1 \times 185 \text { or } \\ 2 \times 120 \\ \hline \end{gathered}$	2×240	2×240	2×240
	[awg] or [kcmil]	$\begin{gathered} 1 \times 350 \text { or } \\ 2 \times 4 / 0 \end{gathered}$	$\begin{gathered} 1 \times 350 \text { or } \\ 2 \times 4 / 0 \end{gathered}$	2×400	2×400	2×400
Weight	[kg] [lbs]	$\begin{aligned} & \hline 110 \\ & 242 \\ & \hline \end{aligned}$	$\begin{aligned} & 110 \\ & 242 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 170 \\ & 418 \\ & \hline \end{aligned}$	$\begin{aligned} & 170 \\ & 418 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 170 \\ & 418 \\ & \hline \end{aligned}$
Tightening torques for power terminals	[Nm] [lbf.in]	$\begin{gathered} 25 \\ (222,5) \\ \hline \end{gathered}$				

1) Secondary conditions: Input current at the rated operating point - applies for the short-circuit voltage of the line supply $\mathrm{V}_{\mathrm{k}} \geq 2.33 \%$ referred to the rated drive converter power and a rated line supply voltage of 400 V without line commutating reactor.

Input voltage range	$3 \mathrm{AC} 500 \mathrm{~V}-600 \mathrm{~V}, \pm 10$ \%							(Unfiltered)	
Order No.	6SE6440-	$\begin{gathered} \text { 2UE17- } \\ \text { 5CA1 } \end{gathered}$	$\begin{gathered} \text { 2UE21- } \\ \text { 5CA1 } \end{gathered}$	$\begin{gathered} \text { 2UE22- } \\ \text { 2CA1 } \\ \hline \end{gathered}$	$\begin{gathered} \text { 2UE24- } \\ \text { OCA1 } \\ \hline \end{gathered}$	$\begin{gathered} \text { 2UE25- } \\ \text { 5CA1 } \\ \hline \end{gathered}$	$\begin{gathered} \text { 2UE27- } \\ \text { 5CA1 } \end{gathered}$	$\begin{gathered} \text { 2UE31- } \\ \text { 1CA1 } \\ \hline \end{gathered}$	$\begin{gathered} \text { 2UE31- } \\ \text { 5DA1 } \end{gathered}$
Frame Size		C							D
Output Rating(CT)	[kW] [hp]	$\begin{gathered} 0,75 \\ 1,0 \end{gathered}$	$\begin{aligned} & 1,5 \\ & 2,0 \end{aligned}$	$\begin{aligned} & 2,2 \\ & 3,0 \end{aligned}$	$\begin{aligned} & 4,0 \\ & 5,0 \end{aligned}$	$5,5$	$\begin{aligned} & 7,5 \\ & 10,0 \end{aligned}$	$\begin{array}{r} 11,0 \\ 15,0 \\ \hline \end{array}$	$\begin{array}{r} 15,0 \\ 20,0 \\ \hline \end{array}$
Output Power	[kVA]	1,3	2,6	3,7	5,8	8,6	10,5	16,2	21,0
CT-Input Current 1)	[A]	2,0	3,7	5,3	8,1	11,1	14,4	21,5	24,9
CT-Output Current	[A]	1,4	2,7	3,9	6,1	9,0	11,0	17,0	22,0
VT-Input Current 1)	[A]	3,2	4,4	6,9	9,4	12,6	18,1	24,9	30,0
VT-Output Current	[A]	2,7	3,9	6,1	9,0	11,0	17,0	22,0	27,0
Fuse	[A]	10	10	10	16	16	25	32	35
Recommended	3NA	3803-6	3803-6	3803-6	3805-6	3805-6	3810-6	3812-6	3814-6
For UL specified	3NE	*	*	*	*				1803-0
Input Cable, min.	$\begin{aligned} & {\left[\mathrm{mm}^{2}{ }^{2}\right]} \\ & {[\mathrm{awg}]} \end{aligned}$	$\begin{aligned} & 1,0 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,0 \\ & 18 \end{aligned}$	$\begin{aligned} & 1,0 \\ & 18 \end{aligned}$	$\begin{aligned} & 1,5 \\ & 16 \\ & \hline \end{aligned}$	$\begin{gathered} 1,5 \\ 16 \end{gathered}$	$\begin{gathered} 2,5 \\ 14 \end{gathered}$	$\begin{gathered} 4,0 \\ 12 \end{gathered}$	$\begin{aligned} & 6,0 \\ & 10 \\ & \hline \end{aligned}$
Input Cable, max.	$\begin{aligned} & {\left[\mathrm{mm}^{2}\right]} \\ & {[\mathrm{awg}]} \end{aligned}$	$\begin{gathered} 10,0 \\ 8 \end{gathered}$	$\begin{gathered} 35,0 \\ 2 \end{gathered}$						
Output Cable, min.	$\left[\mathrm{mm}^{2}\right]$	$\begin{aligned} & \hline 1,0 \\ & 18 \end{aligned}$	$\begin{aligned} & 1,0 \\ & 18 \end{aligned}$	$\begin{aligned} & 1,0 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,0 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,0 \\ & 18 \\ & \hline \end{aligned}$	$\begin{gathered} 2,5 \\ 14 \\ \hline \end{gathered}$	$\begin{gathered} \hline 4,0 \\ 12 \end{gathered}$	$\begin{gathered} 4,0 \\ 12 \end{gathered}$
Output Cable, max.	$\begin{aligned} & {\left[\mathrm{mm}^{2}\right]} \\ & {[\mathrm{awg}]} \end{aligned}$	$\begin{gathered} \hline 10,0 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 10,0 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} \hline 10,0 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} \hline 10,0 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} \hline 10,0 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 10,0 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 10,0 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 35,0 \\ 2 \\ \hline \end{gathered}$
Weight	[kg] [los]	$\begin{gathered} \hline 5,5 \\ 12,1 \\ \hline \end{gathered}$	$\begin{gathered} \hline 5,5 \\ 12,1 \end{gathered}$	$\begin{gathered} \hline 5,5 \\ 12,1 \end{gathered}$	$\begin{gathered} \hline 5,5 \\ 12,1 \\ \hline \end{gathered}$	$\begin{aligned} & 16,0 \\ & 35,0 \end{aligned}$			
Tightening torques for power terminals	[Nm] [lbf.in]				$\begin{aligned} & \hline 2,25 \\ & (20) \\ & \hline \end{aligned}$				$\begin{gathered} 10 \\ (89) \\ \hline \end{gathered}$

Order No.	6SE6440-	2UE318DA1	$\begin{array}{\|c\|} \hline \text { 2UE32- } \\ \text { 2DA1 } \end{array}$	$\begin{gathered} \text { 2UE33- } \\ \text { OEA1 } \end{gathered}$	$\begin{gathered} \text { 2UE33- } \\ \text { 7EA1 } \end{gathered}$	$\begin{gathered} \hline \text { 2UE34- } \\ \text { 5FA1 } \end{gathered}$	2UE35- 5FA1	2UE37- 5FA1
Frame Size		D		E		F		
Output Rating(CT)	$\begin{aligned} & {[\mathrm{kW}]} \\ & {[\mathrm{hp}]} \end{aligned}$	$\begin{array}{r} 18,5 \\ 25,0 \\ \hline \end{array}$	$\begin{aligned} & 22,0 \\ & 30,0 \\ & \hline \end{aligned}$	$\begin{array}{r} 30,0 \\ 40,0 \\ \hline \end{array}$	$\begin{array}{r} 37,0 \\ 50,0 \\ \hline \end{array}$	$\begin{aligned} & 45,0 \\ & 60,0 \\ & \hline \end{aligned}$	$\begin{aligned} & 55,0 \\ & 75,0 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 75,0 \\ 100,0 \end{gathered}$
Output Power	[kVA]	25,7	30,5	39,1	49,5	59,1	73,4	94,3
CT-Input Current 1)	[A]	30,0	35,0	48,0	58,0	69,0	83,0	113,0
CT-Output Current	[A]	27,0	32,0	41,0	52,0	62,0	77,0	99,0
VT-Input Current 1)	[A]	35,0	48,0	58,0	69,0	83,0	113,0	138,0
VT-Output Current	[A]	32,0	41,0	52,0	62,0	77,0	99,0	125,0
Fuse	[A]	50	63	80	80	125	160	160
Recommended	3NA	3820-6	3822-6	3824-6	3824-6	3132-6	3136-6	3136-6
For UL specified	3NE	1817-0	1818-0	1820-0	1820-0	1022-0	1024-0	1224-0
Input Cable, min.	$\begin{gathered} {\left[\mathrm{mm}^{2}\right]} \\ {[\mathrm{awg}]} \\ \hline \end{gathered}$	$\begin{gathered} 10,0 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 10,0 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} 16,0 \\ 6 \\ \hline \end{gathered}$	$\begin{gathered} 25,0 \\ 3 \end{gathered}$	$\begin{gathered} 25,0 \\ 3 \end{gathered}$	$\begin{gathered} 50,0 \\ 1 / 0 \\ \hline \end{gathered}$	$\begin{gathered} 50,0 \\ 1 / 0 \\ \hline \end{gathered}$
Input Cable, max.	$\begin{aligned} & {\left[\mathrm{mm}^{2}\right]} \\ & {[\mathrm{awg}]} \end{aligned}$	$\begin{gathered} 35,0 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 150,0 \\ 300 \\ \hline \end{gathered}$	$\begin{gathered} 150,0 \\ 300 \\ \hline \end{gathered}$	$\begin{gathered} 150,0 \\ 300 \\ \hline \end{gathered}$			
Output Cable, min.	$\begin{aligned} & {\left[\mathrm{mm}^{2}\right]} \\ & {[\mathrm{awg}]} \end{aligned}$	$\begin{gathered} 6,0 \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} \hline 10,0 \\ 8 \end{gathered}$	$\begin{gathered} \hline 16,0 \\ 6 \end{gathered}$	$\begin{gathered} \hline 16,0 \\ 6 \end{gathered}$	$\begin{gathered} \hline 25,0 \\ 3 \end{gathered}$	$\begin{gathered} 35,0 \\ 2 \end{gathered}$	$\begin{gathered} \hline 50,0 \\ 1 / 0 \end{gathered}$
Output Cable, max.	$\begin{aligned} & {\left[\mathrm{mm}^{2}\right]} \\ & {[\mathrm{awg}]} \end{aligned}$	$\begin{gathered} 35,0 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 35,0 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 35,0 \\ 2 \end{gathered}$	$\begin{gathered} 35,0 \\ 2 \end{gathered}$	$\begin{gathered} 150,0 \\ 300 \end{gathered}$	$\begin{gathered} 150,0 \\ 300 \\ \hline \end{gathered}$	$\begin{gathered} 150,0 \\ 300 \end{gathered}$
Weight	[kg] [lbs]	$\begin{array}{r} 16,0 \\ 35,0 \\ \hline \end{array}$	$\begin{array}{r} 16,0 \\ 35,0 \\ \hline \end{array}$	$\begin{array}{r} 20,0 \\ 44,0 \\ \hline \end{array}$	$\begin{array}{r} 20,0 \\ 44,0 \\ \hline \end{array}$	$\begin{gathered} \hline 56,0 \\ 123,0 \\ \hline \end{gathered}$	$\begin{gathered} \hline 56,0 \\ 123,0 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 56,0 \\ & 123,0 \\ & \hline \end{aligned}$
Tightening torques for power terminals	[Nm] [lbf.in]	$\begin{gathered} \hline 10 \\ (89) \\ \hline \end{gathered}$				$\begin{gathered} \hline 50 \\ (445) \\ \hline \end{gathered}$		

[^5] specified values are reduced by between 80% and 90%.

[^6]
2.2 Power Terminals

You can gain access to the mains and motor terminals by removing the front covers.
> Frame Size A (Fig. 2-1)
> Frame Sizes B and C (Fig. 2-2)
$>$ Frame sizse D and E (Fig. 2-3)
$>$ Frame Size F (Fig. 2-4)
$>$ Frame Sizes FX and GX (Fig. 2-5)
$>$ Connection terminals for Frame Sizes A - F (Fig. 2-6)
$>$ Connection overview for Frame Size FX (Fig. 2-7)
> Connection overview for Frame Size GX (Fig. 2-8)
Frame Size A

Fig. 2-1 Removing front covers (Frame Size A)

Frame Sizes B and C

Fig. 2-2 Removing front covers (Frame Sizes B and C)

Frame Sizes D and E

Fig. 2-3
Removing front covers (Frame Sizes D and E)

Frame Size F

Fig. 2-4 Removing front covers (Frame Size F)

Frame Sizes FX and GX

Fig. 2-5
Removing front covers (Frame Sizes FX and GX)

Access to the power supply and motor terminals is possible by removing the front covers.

Fig. 2-6 Connection terminals for Frame Sizes A - F

Fig. 2-7 Connection overview for Frame Size FX

Fig. 2-8 Connection overview for Frame Size GX

2.3 Control terminals

Terminal	Designation	Function	
1	-	Output +10 V	
2	-	Output 0 V	
3	ADC1+	Analog input 1 (+)	
4	ADC1-	Analog input 1 (-)	
5	DIN1	Digital input 1	
6	DIN2	Digital input 2	
7	DIN3	Digital input 3	
8	DIN4	Digital input 4	
9	-	Isolated output $+24 \mathrm{~V} /$ max. 100 mA	
10	ADC2+	Analog input 2 (+)	
11	ADC2-	Analog input 2 (-)	18192021222324
12	DAC1+	Analog output 1 (+)	
13	DAC1-	Analog output 1 (-)	
14	PTCA	Connection for PTC / KTY84	21314151617262712812930
15	PTCB	Connection for PTC / KTY84	
16	DIN5	Digital input 5	
17	DIN6	Digital input 6	
18	DOUT1/NC	Digital output 1 / NC contact	
19	DOUT1/NO	Digital output 1 / NO contact	
20	DOUT1/COM	Digital output 1 / Changeover contact	
21	DOUT2/NO	Digital output 2 / NO contact	
22	DOUT2/COM	Digital output 2 / Changeover contact	
23	DOUT3/NC	Digital output 3 / NC contact	
24	DOUT3/NO	Digital output 3 / NO contact	
25	DOUT3/COM	Digital output 3 / Changeover contact	
26	DAC2+	Analog output 2 (+)	
27	DAC2-	Analog output 2 (-)	
28	-	Isolated output $0 \mathrm{~V} / \mathrm{max} .100 \mathrm{~mA}$	
29	P+	RS485 port	
30	$\mathrm{N}-$	RS485 port	

Fig. 2-9 Control terminals of MICROMASTER 440

2.4 Block diagram

Fig. 2-10
Block diagram

3 Factory setting

The MICROMASTER 440 frequency inverter is set in the factory so that it can be operated without any additional parameterization. To do this, the motor parameters set in the factory (P0304, P0305, P0307, P0310), that correspond to a 4-pole 1LA7 Siemens motor, must match the rated data of the connected motor (refer to the rating plate).
Further factory setting:
$>$ Command sources P0700 $=2$ (Digital input, see Fig. 3-1)
$>$ Setpoint source $\quad \mathrm{P} 1000=2$ (Analog input, see Fig. 3-1)
> Motor cooling P0335 = 0
> Motor current limit P0640 = 150 \%
> Min. frequency P1080 $=0 \mathrm{~Hz}$
> Max. frequency P1082 = 50 Hz
> Ramp-up time $\mathrm{P} 1120=10 \mathrm{~s}$
> Ramp-down time P1121 = 10 s
> Control mode P1300 $=0$

Fig. 3-1 Pre-assignment of the inputs

Parameter	Function	
P0701 = 1	ON / OFF1	(I/O)
$\mathrm{P} 0702=12$	Reversing	(®)
P0703 = 9	Fault acknowledge	(Ack)
$\mathrm{P} 0704=15$	Fault acknowledge	
P0705 = 15	Fixed setpoint (direct)	
$\mathrm{P} 0706=15$	Fixed setpoint (direct)	
P0707 = 0	Fixed setpoint (direct)	
P0708 = 0	Digital input disabled	

3.1 50/60 Hz DIP switch

The default motor base frequency of the MICROMASTER inverter is 50 Hz . For motors, which are designed for a base frequency of 60 Hz , the inverters can be set to this frequency using the DIP50/60 switch.
> OFF position:
European defaults (Rated motor frequency $=50 \mathrm{~Hz}$, Power in kW etc.)
$>$ ON position:
North American defaults
(Rated motor frequency $=60 \mathrm{~Hz}$, Power in hp etc.)

4 Communications

4.1 Establishing communications MICROMASTER $440 \Leftrightarrow$ STARTER

The following optional components are additionally required in order to establish communications between STARTER and MICROMASTER 440:
> PC <-> frequency inverter connecting set
$>$ BOP if the USS standard values (refer to Section 6.4.1 "Serial Interface (USS)") are changed in the MICROMASTER 440 frequency inverter

| PC <-> frequency inverter connecting set | MICROMASTER 440 |
| :--- | :--- | | USS settings, refer to 6.4.1 "Serial |
| :--- |
| Interface (USS)" |

4.2 Establishing communications MICROMASTER $440 \Leftrightarrow$ AOP

> Communications between AOP and MM440 are based on the USS protocol, analog to STARTER and MM440.
> Contrary to the BOP, the appropriate communication parameters - both for the MM440 as well as for AOP - should be set if the automatic interface detection was not carried-out (refer to Table 4-1).
$>$ Using the optional components, the AOP can be connected to the communication interfaces (refer to Table 4-1).

Table 4-1

	AOP at the BOP link	AOP at the COM link
MM440 parameters - baud rate - bus address	$\begin{gathered} \mathrm{P} 2010[1] \\ - \end{gathered}$	$\begin{gathered} \text { P2010[0] } \\ \text { P2011 } \\ \hline \end{gathered}$
AOP parameters - baud rate - bus address	P8553	$\begin{aligned} & \text { P8553 } \\ & \text { P8552 } \end{aligned}$
Options - direct connection - indirect connection	No option necessary BOP/AOP door mounting kit (6SE6400-0PM00-0AA0)	Not possible AOP door mounting kit (6SE6400-0MD00-0AA0)

AOP as control unit

- A fault can be acknowledged via the AOP independently of P0700 or P1000.

4.3 Bus interface (CB)

5 BOP / AOP (Option)

5.1 Buttons and their Functions

5.2 Changing parameters using as an example P0004 "Parameter filter function"

St	ep	Result on the display
1	Press \boldsymbol{P} in order to access the parameter	P11)
2	Press until P0004 is displayed	${ }^{\text {P10) }} \mathrm{P} 00004$
3	Press \boldsymbol{P} in order to reach the parameter value level	0
4	Press or in order to obtain the required value	7
5	Press P to acknowledge the value and to save the value	P0004
6	The user can only see the command parameters.	

6 Commissioning

6.1 Quick commissioning

The frequency inverter is adapted to the motor using the quick commissioning function and important technological parameters are set. The quick commissioning shouldn't be carried-out if the rated motor data saved in the frequency inverter (4-pole 1LA Siemens motor, star circuit configuration $\widehat{=}$ frequency inverter (FU)specific) match the rating plate data.
Parameters, designated with a * offer more setting possibilities than are actually listed here. Refer to the parameter list for additional setting possibilities.

End of the quick commissioning/drive setting

If additional functions must be implemented at the drive inverter, please use the Section "Commissioning the application" (refer to Section 6.4). We recommend this procedure for drives with a high dynamic response.

6.2 Motor data identification

6.3 Magnetizing current

> The value of the magnetizing current r0331/P0320 has a significant influence on the closed-loop control. This cannot be measured at standstill. This means that the value is estimated for standard 4-pole 1LA7 SIEMENS standard using the automatic parameterization $\mathrm{P} 0340=1$ ($\mathrm{P} 0320=0$; result in r 0331).
$>$ If the deviation of the magnetizing current is too high, then the values for the magnetizing reactance and those of the rotor resistance will not be able to be accurately determined.
> Especially for third-party motors it is important that the magnetizing current that is determined, is carefully checked and if required, appropriately corrected.

The procedure to manually determine the magnetizing current and to re-calculate the equivalent circuit diagram data when the drive is operated with closed-loop vector control ($\mathrm{P} 1300=20 / 21$) is shown in the following.

Quick commissioning routine

Using the quick commissioning routine the frequency inverter is adapted to the motor and important technology parameters are set.

Motor data identification routine

Using the motor data identification routine motor equivalent circuit diagram data is determined using a measuring technique.

Determing the magnetizing current

In order to determine the magnetizing current ($\mathrm{P} 0320 / \mathrm{r} 0331$), the motor should be accelerated up to approximately $\mathbf{8 0 \%}$ of its rated speed under no-load operating conditions.
In so doing, the following conditions must be carefully maintained:

- the vector control must be activated, P1300 $=20.21$
- no field weakening (r0056.8 = 0)
- flux setpoint, r1598 = 100%
- no efficiency optimization, P1580 = 0%

No-load operation means that the motor is operated without a load (i.e. no coupled driven machine).
Under steady-state conditions, a current r0027 is obtained that approximately corresponds to the rated magnetizing current r0331. (the current is always less than the no-load current for a pure V/f control).
Measuring and entering the magnetizing current and therefore the associated new calculation of the equivalent circuit diagram data of the motor is an iterative procedure. It must be repeated at least 2-3 times until the following criteria are fulfilled:

- The more accurate the value of the magnetizing current that was entered, the better the flux setpoint ($\mathbf{r} 1598=100 \%$) matches the flux actual value (r0084=96..104\%) of the observer model.
- The output Xm adaptation ($\mathbf{r 1 7 8 7}$) of the observer model should be as low as possible. Good values lie between $\mathbf{1 - 5 \%}$. The less that the Xh adaptation of the observer must operate, the sensitivity of the motor parameters after power failures are that much less sensitive.

NOTE

In order to display r0084 at the BOP/AOP, the LEVEL 4 parameters must be enabled using service parameter P3950=46.

Now, the new value can be entered in P0320 from the determined fluxgenerating current component r0029 by applying the following equation.
P0320 = r0029 * $100 /$ P0305

Calculating the motor parameters

The values of the motor equivalent circuit diagram data are calculated from the entered rating plate data. In addition, the parameters of the controls are pre-set (subsequently optimized) (P0340 = 3).

6.4 Commissioning the application

An application is commissioned to adapt/optimize the frequency inverter - motor combination to the particular application. The frequency inverter offers numerous functions - but not all of these are required for the particular application. These functions can be skipped when commissioning the application. A large proportion of the possible functions are described here; refer to the parameter list for additional functions.
Parameters, designated with a * offer more setting possibilities than are actually listed here. Refer to the parameter list for additional setting possibilities.

6.4.1 Serial Interface (USS)

USS baud rate Sets baud rate for USS communication.	6	Possible Settings:	
Sets baud rate for USS communication.		4	2400 Baud
USS address	0	5	4800 Baud
Sets unique address for inverter.		7	19200 Baud
USS PZD length	2	8	38400 Baud
Defines the number of 16-bit words in PZD part of USS telegram.		0	57600 Baud
USS PKW length	127	11	93750 Baud
Defines the number of 16-bit words in PKW part of USS telegram		12	115200 Baud

6.4.2 Selection of command source

6.4.3 Digital input (DIN)

Change-over (toggles) between high active (PNP) and low active (NPN). This applies to all digital inputs simultaneously.

0	NPN mode $==>$ low active
1	PNP mode ==> high active

DIN channel (e.g. DIN1 - PNP (P0725 = 1))

6.4.4 Digital outputs (DOUT)

6.4.5 Selection of frequency setpoint

6.4.6 Analog input (ADC)

Delay, ADC signal loss

Defines the delay time between the loss of the analog setpoint and fault message F0080
being displayed.

6.4.7 Analog output (DAC)

6.4.8 Motor potentiometer (MOP)

P1031 =...	Setpoint memory of the MOP Saves last motor potentiometer setpoint (MOP) that was active before OFF command or power down. 0 MOP setpoint will not be stored 1 MOP setpoint will be stored (P1040 is updated)				
P1031 ...					
P1032 =...	Inhibit negative MOP setpoints 0 Neg. MOP setpoint is allowed 1 Neg. MOP setpoint inhibited				1
P1040 =...	Setpoint of the MOP Determines setpoint for motor potentiometer control.				5.00 Hz
	MOP ramp-up and ramp-down times are defined by the parameters P1120 and P1121.				
	Possible parameter settings for the selection of MOP:				
		Selection	MOP up	MOP down	
	DIN	$\begin{gathered} \mathrm{P} 0719=0, \mathrm{P} 0700=2, \mathrm{P} 1000=1 \\ \text { or }= \\ \mathrm{P} 0719=1, \mathrm{P} 0700=2 \end{gathered}$	$\begin{aligned} & \text { P0702 = } 13 \\ & \text { (DIN2) } \end{aligned}$	$\begin{gathered} \text { P0703 = } 14 \\ \text { (DIN3) } \end{gathered}$	
	BOP	$\begin{gathered} P 0719=0, P 0700=1, P 1000=1 \\ \text { or } \\ P 0719=11 \end{gathered}$	UP button	DOWN button	
	USS on BOP link	$\begin{gathered} \mathrm{P} 0719=0, \mathrm{P} 0700=4, \mathrm{P} 1000=1 \\ \text { or } \\ \mathrm{P} 0719=41 \end{gathered}$	USS control word r2032 Bit13	USS control word r2032 Bit14	
	USS on COM link	$\begin{gathered} \mathrm{P} 0719=0, \mathrm{P} 0700=5, \mathrm{P} 1000=1 \\ \mathrm{or} \\ \mathrm{P} 0719=51 \end{gathered}$	USS control word r2036 Bit13	USS control word r2036 Bit14	
	CB	$\begin{gathered} \mathrm{P} 0719=0, \mathrm{P} 0700=6, \mathrm{P} 1000=1 \\ \text { or } \\ \mathrm{P} 0719=61 \end{gathered}$	$\begin{aligned} & \text { CB control word } \\ & \text { r2090 Bit13 } \end{aligned}$	CB control word r2090 Bit14	

6.4.9 Fixed frequency (FF)

6.4.10
 JOG

6.4.12 Reference/limit frequencies

	dred
	Sets minimum motor frequency $[\mathrm{Hz}]$ at which motor will run irrespective of frequency setpoint. If the setpoint falls below the value of p1080, then the output frequency is set to p1080 taking into account the sign.
	Sets maximum motor frequency $[\mathrm{Hz}]$ at which motor will run irrespective of the frequency setpoint. If the setpoint exceeds the value p1082, then the output frequency is limited. The value set here is valid for both clockwise and anticlockwise rotation.
	The reference frequency in Hertz corresponds to a value of 100%. This setting should be changed if a maximum frequency of higher than 50 Hz is required. It is automatically changed to 60 Hz if the standard 60 Hz frequency was selected using p0100. NOTE This reference frequency effects the setpoint frequency as both the frequency setpoints via
	Reference voltage (entered in V) The reference voltage in Volt (output voltage) corresponds to a value of 100%. NOTE This setting should only be changed if it is necessary to output the voltage with a different scaling.
	Reference current (entered in A) The reference current in Amps (output current) corresponds to a value of 100%. Factory setting $=200 \%$ of the rated motor current (P0305). NOTE This setting should only be changed if it is necessary to output the current with a different scaling.
	Reference torque (entered in Nm) The reference torque in Nm corresponds to a value of 100%. Factory setting $=200 \%$ of the rated motor torque at a constant motor torque determined from the appropriate motor data. NOTE This setting should only be changed if it is necessary to output the torque with a different scaling.

6.4.13 Inverter protection

6.4.14 Motor protection

In addition to the thermal motor protection, the motor temperature is also included in the adaptation of the motor equivalent circuit diagram data. Especially for a high thermal motor load, this adaptation has a significant influence on the degree of stability of the closed-loop vector control. For MM440 the motor temperature can only be measured using a KTY84 sensor. For the parameter setting P0601 = 0,1, the motor temperature is calculated / estimated using the thermal motor model.
If the frequency inverter is permanently supplied with an external 24 V voltage, then the motor temperature is also tracked/corrected using the motor temperature time constant - even when the line supply voltage is switched-out.

A high thermal motor load and when the line supply is frequently switched-out/switched-in requires, for closed-loop vector control

- that a KTY84 sensor is used, or
- an external 24 V power supply voltage is connected

Motor cooling (Selects motor cooling system used)
0 Self-cooled: Using shaft mounted fan attached to motor
1 Force-cooled: Using separately powered cooling fan
2 Self-cooled and internal fan
3 Force-cooled and internal fan
Motor temperature sensor
Selects the motor temperature sensor.
0 No sensor
1 PTC thermistor (PTC)
2 KTY84
When "no sensor" or "PTC thermistor (PTC)" is selected, the motor temperature is determined on the basis of the value estimated by the thermal motor model.

Alarm threshold, motor overtemperature

Defines the alarm threshold for the motor overtemperature protection. This threshold, where either a shutdown (trip) or Imax reduction is initiated (P0610) always lies 10% above the alarm threshold.

$$
\begin{array}{ll}
\vartheta_{\text {trip }}=1.1 \cdot \vartheta_{\text {warn }}=1.1 \cdot \text { P0604 } & \vartheta_{\text {warn }}: \text { Warning threshold (P0604) } \\
& \vartheta_{\text {trip }}: \text { Trip threshold (max. permissible temperature) }
\end{array}
$$

The alarm threshold should be at least $40^{\circ} \mathrm{C}$ greater than the ambient temperature P0625.
P0604 \geq P0625 + $40^{\circ} \mathrm{C}$

Inverter temperature reaction

Defines reaction when motor temperature reaches warning threshold.
0 No reaction, warning only
Warning and $I_{\max }$ reduction (results in a lower output frequency)
2 Warning and trip (F0011)
Motor overload factor [\%]
150.0 \%

Defines motor overload current limit in [\%] relative to p0305 (rated motor current). Limited to maximum inverter current or to 400% of rated motor current (p0305), whichever is the lower.

6.4.15 Encoder

Select encoder type	0
Selects the encoder type.	
0	Inhibited
1	Single-track pulse encoder
2	Two-track pulse encoder
The table shows the values of	
P0400 as a function of the	

Parameter	Terminal	Track	Encoder output
P0400 $=1$	A	$\boxed{~} \longrightarrow$	single ended
	$\begin{gathered} \text { A } \\ \text { AN } \end{gathered}$		differential
P $0400=2$	A		single ended
	$\begin{gathered} \text { A } \\ \text { AN } \\ \text { B } \\ \text { BN } \end{gathered}$		differential

In order to guarantee reliable operation, the DIP switches on the encoder module must be set as follows depending on the encoder type (TTL, HTL) and encoder output:

Type	Output	
single ended	differential	
TTL (e.g. 1XP8001-2)	111111	010101
HTL (e.g. 1XP8001-1)	101010	000000

Encoder pulses per revolution	1024

Specifies the number of encoder pulses per revolution.

Reaction on speed signal loss	0
Defines the calculation method.	
0	No transition
1	Transition into SLVC

Allowed speed difference	10.00 Hz

Parameter P0492 defines the frequency threshold for the loss of the encoder signal (fault F0090).

CAUTION

p0492 = 0 (no monitoring function):
With p0492 $=0$, the loss of the encoder signal at high frequency as well as at a low frequency is de-activated. As a result, the system does not monitor for the loss of the encoder signal.
Delay speed loss reaction
10 ms
P0492 is used to detect the loss of the encoder signal at low frequencies. If the motor speed is less than the value of P0492, the loss of the encoder signal is determined using an appropriate algorithm. P0494 defines the delay time between detecting the loss of the speed signal and initiating the appropriate response.

CAUTION

p0494 = 0 (no monitoring function):
With p0494 = 0, the loss of the encoder signal at low frequencies is de-activated. As a result, at these frequencies, a loss of the encoder signal is not detected (loss of the encoder signal at high frequency remains active as long as parameter p0492 > 0).

6.4.16 V/f control

6.4.17 Field-orientated control

Limitations

6.4.17.1 Sensorless vector control (SLVC)

For most applications the setting of parameter p1750 $=0$ gives the best result at low frequency.
Start-freq. motor model (SLVC)
Enter the start frequency of sensorless vector control (SLVC), thereby SLVC switches over from open-loop to closed-loop at that frequency.

6.4.17.2 Vector control with encoder (VC)

> First step: Parameterizing the speed encoder (refer to Section 6.4.15)
> When commissioning Vector Control with encoder-feedback (VC), the drive should be configured for V/f mode (see p1300) first. Run the drive and compare r0061 with r0021 that should agree in:

- sign
- magnitude (with a deviation of only a few percent)

Only if both criteria are fulfilled, change p1300 and select VC (p1300 = 21/23).
$>$ Encoder loss detection must be disabled $(\mathrm{p} 0492=0)$ if torque is limited externally., e.g.:

- closed-loop winder control
- traversing / moving to a fixed endstop
- when using a mechanical brake

Supplementary torque setpoint

$>$ In the vector mode - with / without encoder - the speed controller can be subordinate to a constant or variable supplementary torque.
$>$ The supplementary setpoint can be used to advantage for hoisting gear with low intrinsic friction when starting in the vertical direction. The supplementary torque setpoint must always be impressed in the hoisting (raising) direction (please observe the sign!). As a result of the supplementary torque, also when lowering, a slip is immediately established that has a stabilizing effect on the closed-loop control (there is no significant load sag).
$>$ The sign of the supplementary torque setpoint can be determined as follows in the commissioning phase with the appropriate care and taking into account all of the relevant safety regulations:
Hoist (raise) a minimum load using the hoisting gear and read-out the sign from parameter r0079 (the sign of r0079 corresponds to the sign of the supplementary torque setpoint).
$>$ An empirical value of approx. 40% of the rated motor torque r0333 has lead to good results for existing hoisting gear (carefully observe the sign!).

6.4.18 Converter-specific Functions

6.4.18.1 Flying start

6.4.18.2 Automatic restart

P1210 = ..

Automatic restart	1
Configures automatic restart function.	
0	Disabled
1	Trip reset after power on
2	Restart after mains blackout
3	Restart after mains brownout or fault
4	Restart after mains brownout
5	Restart after mains blackout and fault
6	Restart after mains brown/blackout or fault

6.4.18.3 Holding brake

$>$ Series / commissioning for hazardous loads

- lower the load to the floor
- when replacing the frequency inverter, prevent (inhibit) the frequency inverter from controlling the motor holding brake (MHB)
- secure the load or inhibit the motor holding brake control (so that the brake cannot be controlled) and then - and only then - carry-out quick commissioning / parameter download using the PC-based tool (e.g. STARTER, AOP)
> Parameterize the weight equalization for hoisting gear applications
- magnetizing time P0346 greater than zero
- min. frequency P1080 should approximately correspond to the motor slip r0330 (P1080 ~ r0330)
- adapt the voltage boost to the load
a) V/f (P1300 = 0 ...3): $\mathrm{P} 1310, \mathrm{P} 1311$
b) $\operatorname{SLVC}(P 1300=20): \quad P 1610, P 1611$

It is not sufficient to just select the status signal r0052 bit 12 "motor holding brake active" in P0731 - P0733. In order to activate the motor holding brake, in addition, parameter P1215 must be set to 1 .
$>\mathrm{It}$ is not permissible to use the motor holding brake as operating brake. The reason for this is that the brake is generally only dimensioned/designed for a limited number of emergency braking operations.
$>$ The brake closing / opening times can be taken from the appropriate manual. The following typical values have been taken from Motor Catalog M11 2003/2004, Page 2/51:

Motor size	Brake type	Opening time [ms]	Closing time [ms]	
63	2LM8 005-1NAxx	25	56	
71	2LM8 005-2NAxx	25	56	
80	2LM8 010-3NAxx	26	70	
90	2LM8 020-4NAxx	37	90	
100	2LM8 040-5NAxx	43	140	
112	2LM8 060-6NAxx	60	210	
132	2LM8 100-7NAxx	50	270	
160	2LM8 260-8NAxx	165	340	
180	2LM8 315-0NAxx	152	410	
200	2 2LM8 400-0NAxx	230	390	
225				

6.4.18.4 DC brake

6.4.18.5 Compound braking

6.4.18.6 Dynamic braking

Dynamic braking
Dynamic braking is activated using parameter P1237 - the nominal (rated) duty cycle as well as the switch-in duration of the braking resistor are also defined.
0 Inhibited
1 Load duty cycle 5 \%
2 Load duty cycle 10 \%
3 Load duty cycle 20 \%
4 Load duty cycle 50 \%
5 Load duty cycle 100 \%
Using the dynamic brake, the regenerative feedback energy is transferred to the external braking resistor using the chopper control (braking chopper); it is converted into thermal energy (heat) in this resistor. This dynamic braking allows the drive to be braked in a controlled fashion. This function is not available for sizes FX and GX.

6.4.18.7 Vdc controller

6.4.18.8 PID controller

6.4.18.9 Free function blocks (FFB)

6.4.19 Command and drive data set

The currently active command data set (CDS) is displayed using parameter r0050:

	Select CDS		Active CDS
r0055 bit15	r0054 bit15	r0050	
1. CDS	0	0	0
2. CDS	0	1	1
3. CDS	1	0	2
3. CDS	1	1	2

Most frequent settings:

722.0 = Digital input 1 (P0701 must be set to 99, BICO)
722.1 = Digital input 2 (P0702 must be set to 99, BICO)
722.2 = Digital input 3 (P0703 must be set to 99, BICO)
722.3 = Digital input 4 (P0704 must be set to 99, BICO)
722.4 = Digital input 5 (P0705 must be set to 99, BICO)
722.5 = Digital input 6 (P0706 must be set to 99, BICO)
$722.6=$ Digital input 7 (via analog input 1, P0707 must be set to 99)
722.7 = Digital input 8 (via analog input 2, P0708 must be set to 99)

Example for CDS changeover:

CDS1: Command source via terminals and setpoint source via analog input (ADC)
CDS2: Command source via BOP and setpoint source via MOP
CDS changeover is realized using digital input 4 (DIN 4)
Steps:

1. Carry-out commissioning for CDS1 (P0700[0] = 2 and $\mathrm{P} 1000[0]=2$)
2. Connect P0810 (P0811 if required) to the CDS changeover source (P0704[0] = 99, P0810 = 722.3)
3. Copy from CDS1 to CDS2 (P0809[0] $=0, P 0809[1]=1, P 0809[2]=2)$
4. Adapt CDS2 parameters ($\mathrm{P} 0700[1]=1$ and $\mathrm{P} 1000[1]=1$)

Example:

1. Commissioning steps with a motor:

- Carry-out commissioning at DDS1.
- Connect P0820 (P0821 if required) to the DDS changeover source
(e.g. using DIN 4: P0704[0] = 99, P0820 = 722.3).
- Copy DDS1 to DDS2 (P0819[0] = 0, P0819[1] = 1, P0819[2] = 2).
- Adapt DDS2 parameters
(e.g. ramp-up / ramp-down times P1120[1] and P1121[1]).

2. Commissioning steps with 2 motors (motor 1, motor 2):

- Commission motor 1; adapt the remaining DDS1 parameters.
- Connect P0820 (P0821 if required) to the DDS changeover source (e.g. via DIN 4: P0704[0] = 99, P0820 = 722.3).
- Changeover to DDS2 (check using r0051).
- Commission motor 2; adapt the remaining DDS2 parameters.

6.4 .20	Diagnoseparameter
r0035	CO: Motor temperature Displays the measured motor temperature in ${ }^{\circ} \mathrm{C}$.
r0036	CO: Frequency inverter utilization Displays the frequency inverter utilization as a \% referred to the overload. In so doing, the value is calculated using the $I^{2} t$ model. The $I^{2} t$ actual value relative to the maximum possible $I^{2} t$ value provides the level of utilization.
r0052	CO/BO: Act. status word 1 Displays the first active status word (ZSW) of the frequency inverter (bit format) and can be used to diagnose the inverter status.
r0054	CO/BO: Control word 1 Displays the first control word (STW) of the frequency inverter and can be used to display the active commands.
r0063	CO: Actual frequency Displays the actual frequency in Hz .
r1079	CO: Selected frequency setpoint Displays the selected frequency setpoint. The following frequency setpoints are displayed: r1078 total setpoint (HSW + ZUSW) P1058 JOG frequency, clockwise P1059 JOG frequency, counter-clockwise.
r1114	CO: Freq. setpoint after dir. ctrl. Displays the setpoint (reference) frequency in Hz after the function block to reverse the direction of rotation.
r1170	CO: : Frequency setpoint after RFG Displays the total frequency setpoint (reference value) in Hz after the ramp-function generator.

6.5 Series commissioning

An existing parameter set can be transferred to a MICROMASTER 440 frequency inverter using STARTER or DriveMonitor (refer to Section 4.1 "Establishing communications MICROMASTER $440 \Leftrightarrow$ STARTER").

Typical applications for series commissioning include:

1. If several drives are to be commissioned that have the same configuration and same functions. A quick / application commissioning (first commissioning) must be carried-out for the first drive. Its parameter values are then transferred to the other drives.
2. When replacing MICROMASTER 440 frequency inverters.

6.6 Parameter reset of factory setting

$7 \quad$ Displays and messages

7．1 LED status display

	SIEME	LEDs for indicating the drive state OFF 凉 ON approx． 0.3 s ，flashing approx． 1 s ，twinkling	
\bullet	Mains not present	登	Fault inverter temperature
㳫	Ready to run	（0）	Warning current limit both LEDs twinkling same time
蒋	Inverter fault other than the ones listed below	（0）	Other warnings both LEDs twinkling alternatively
䓵	Inverter running	\％	Undervoltage trip／undervoltage warning
$\stackrel{\bullet}{\bullet(0)}$	Fault overcurrent	\bigcirc	Drive is not in ready state
（0）	Fault overvoltage	$\stackrel{\odot}{\circ}$	ROM failure both LEDs flashing same time
景	Fault motor overtemperature	$\stackrel{\odot}{\odot}$	RAM failure both LEDs flashing alternatively

7.2 Fault messages and Alarm messages

Fault	Significance
F0001	Overcurrent
F0002	Overvoltage
F0003	Undervoltage
F0004	Inverter Overtemperature
F0005	Inverter I't
F0011	Motor Overtemperature I ${ }^{2}$ t
F0012	Inverter temp. signal lost
F0015	Motor temperature signal lost
F0020	Mains Phase Missing
F0021	Earth fault
F0022	HW monitoring active
F0023	Output fault
F0024	Rectifier Over Temperature
F0030	Fan has failed
F0035	Auto restart after n
F0040	Automatic Calibration Failure
F0041	Motor Data Identification Failure
F0042	Speed Control Optimisation Failure
F0051	Parameter EEPROM Fault
F0052	Power stack Fault
F0053	IO EEPROM Fault
F0054	Wrong IO Board
F0060	Asic Timeout
F0070	CB setpoint fault
F0071	USS (BOP link) setpoint fault
F0072	USS (COM link) setpoint fault
F0080	ADC lost input signal
F0085	External Fault
F0090	Encoder feedback loss
F0101	Stack Overflow
F0221	PID Feedback below min. value
F0222	PID Feedback above max. value
F0450	BIST Tests Failure (Service mode only) F0452
	Belt Failure Detected

Alarm	Significance
A0501	Current Limit
A0502	Overvoltage limit
A0503	Undervoltage Limit
A0504	Inverter Overtemperature
A0505	Inverter I't
A0506	Inverter Duty Cycle
A0511	Motor Overtemperature I ${ }^{2}$ t
A0520	Rectifier OverTemperature
A0521	Ambient OverTemperature
A0522	I2C read out timeout
A0523	Output fault
A0535	Braking Resistor Hot
A0541	Motor Data Identification Active
A0542	Speed Control Optimization Active
A0590	Encoder feedback loss warning
A0600	RTOS Overrun Warning
A0700	CB warning 1
\vdots	\vdots
A0709	CB warning 9
A0710	CB communication error
A0711	CB configuration error
A0910	Vdc-max controller de-activated
A0911	Vdc-max controller active
A0912	Vdc-min controller active
A0920	ADC parameters not set properly
A0921	DAC parameters not set properly
A0922	No load applied to inverter
A0923	Both JOG Left and Right are requested
A0952	Belt Failure Detected
A0936	PID Autotuning Active

Information about MICROMASTER 440 is also available from:

Regional Contacts

Please get in touch with your contact for Technical Support in your Region for questions about services, prices and conditions of Technical Support.

Central Technical Support

The competent consulting service for technical issues with a broad range of requirements-based services around our products and systems.

Europe / Africa

```
Tel: + +49 (0) 1805050222
Fax: +49 (0)1805050223
Email: adsupport@siemens.com
```


America

Tel: \quad +1 4232622522
Fax: $\quad+14232622589$
Email: simatic.hotline@sea.siemens.com

Asia / Pacific

Tel: \quad +86 1064757575
Fax: \quad +86 1064747474
Email: adsupport.asia@siemens.com

Online Service \& Support

The comprehensive, generally available information system over the Internet, from product support to service \& support to the support tools in the shop.
http://www.siemens.com/automation/service\&support

Internet Address

Customers can access technical and general information under the following address: http://www.siemens.com/micromaster

[^0]: * UL listed fuses such as Class NON from Bussmann are required for use in America

[^1]: * UL listed fuses such as Class NON from Bussmann are required for use in America

[^2]: * UL listed fuses such as Class NON from Bussmann are required for use in America

[^3]: * UL listed fuses such as Class NON from Bussmann are required for use in America

[^4]: * UL listed fuses such as Class NON from Bussmann are required for use in America

[^5]: 1) Secondary conditions: Input current at the rated operating point - applies for the short-circuit voltage of the line supply $\mathrm{V}_{\mathrm{k}}=2 \%$ referred to the rated drive converter power and a rated line supply voltage of 500 V without line commutating reactor. If a line commutating reactor is used. the
[^6]: * UL listed fuses such as Class NON from Bussmann are required for use in America

